Dougherty Valley HS Chemistry - AP Acid Base – Henderson Hasselbalch

Name:

Period:

Seat#:

Directions: Show all work. Box your final answer. *Remember – lots of ways to do these. If you get the right answer and someone can follow your work and units etc. then you are FINE!

	$pK_a = -\log(K_a) \qquad K_a$	$= \frac{[H^+][A^-]}{[HA]} \qquad [H^+] = \frac{K_a[A^-]}{[HA]}$
	$pK_{a} = -\log(K_{a}) \qquad K_{a}$ $pH = pK_{a} + \log\left(\frac{[salt form]}{[acid form]}\right)$	$pOH = pK_b + log\left(\frac{[salt form]}{[base form]}\right)$
1)	A buffer is prepared containing 1.00 molar acetic acid and 1.00 molar sodium acetate. What is its pH? 4.752 $Ka = 1.76 \times 10^5$	2) A buffer is prepared containing 1.00 molar acetic acid and 0.800 molar sodium acetate. What is its pH? $\underline{4.655}$ $Ka = 1.76 \times 10^{-5}$
3)	A buffer is prepared containing 0.600 M anisic acid and 0.800 M sodium anisate. What is its pH? 4.596 $Ka = 3.38 \times 10^5$	4) A buffer is prepared containing 1.00 M ammonia and 1.00 M ammonium chloride. What is its pH? <u>9.248</u> Kb = 1.8 x 10 ⁵
5)	A buffer is prepared containing 1.00 M ammonia and 0.800 M ammonium chloride. What is its pH? <u>9.345</u> $Ka = 1.8 \times 10^{-5}$	6) A buffer is prepared containing 0.600 M nicotine and 0.800 M nicotine hydrochloride. What is its pH? <u>7.896</u> Nicotine is a base. pKa = 8

7)	 pK_a for phenolphthalein is 9.3 at room temperature. a. Calculate ratio of its anionic form to acid form at pH 8.2 and then again at pH 10. <u>At pH 8.2 = ratio of base form to acid form = 0.0794 to 1</u> <u>At pH 10 = ratio of base form to acid form = 5.01 to 1</u> 		 b. Using these values, explain the color change within this pH range from 8.2 – 10
8)	Calculate the pH of the solution that results from the addition of 0.040 moles of HNO ₃ to a buffer made by combining 0.500 L of 0.380 M HC ₃ H ₅ O ₂ (K _a = 1.30×10^{-5}) and 0.500 L of 0.380 M NaC ₃ H ₅ O ₂ <u>pH = 4.700</u> *Assume addition of the nitric acid has no effect on volume.	CH₃COOH ha	H when 25.0 mL of 0.200 M of is been titrated with 35.0 mL of 0.100 M 1.8 x 10 ⁻⁵) <i>pH</i> = 5.11
10	A beaker with 100.0 mL of an acetic acid buffer with a pH of 5.000 is sitting on a benchtop. The total molarity of acid and conjugate base in this buffer is 0.1000 M. A student adds 7.300 ml of a 0.3600 M HCl solution to the beaker. How much will the pH change? The pKa of acetic acid is 4.752. $pH = 4.518$	create a buffe	ratio of CH ₃ NH ₂ to CH ₃ NH ₃ CI required to r with pH = 10.14 H ₃ NH ₂ = 3.357 <u>base/acid ratio = 0.314</u>